Table I. Thermochemical Data Relating to α -Aminoalkyl Radicals (±2 kcal mol⁻¹)

radical	$\Delta H_{\mathbf{f}}(\mathbf{R}_2 \cdot),$ kcal mol ⁻¹	$D(R_2-H)^a$ k cal mol ⁻¹	$E_{s}(R_{2} \cdot),^{b}$ kcal mol ⁻¹	$IP(R_2 \cdot), eV$
Me, NĊH,	26	84	20	5.7°
MeNHĊH,	30	87	17	5.9 ^c
H,NĊH, Î	36, 37 ^d	94	10	6.2 ^c
C,H,CH,	48 ^e	87	16	7.2 ^f
CH, CHCH,	39 ^e	86	18	8.1^{f}
CH, OCH,	- 3 ^g	93 ^g	118	6.9^{i}
HOĊH	-6 ^j	96 ^h	8	7.6 ^k

 $\frac{^{a}D(R_{1}-H) = \Delta H_{f}(R_{2}\cdot) + \Delta H_{f}(H) - \Delta H_{f}(R_{2}H). \quad b \text{ See ref 2.} }{^{c}IP(R_{2}\cdot) = \Delta H_{f}(R_{2}^{+}) - \Delta H_{f}(R_{2}\cdot). \quad d \text{ From ref 7. } e \text{ From ref 3} }$ and 4. f From: Houle, R. A.; Beauchamp, J. L. J. Am. Chem. Soc.1978, 100, 3290-3294. Lossing, F. P. Can. J. Chem. 1971, 49, 357-362. ^g From ref 5. ^h From ref 6. ⁱ Lossing, F. P. J. Am. *Chem. Soc.* 1977, 99, 7526–7530. ^{*j*} Golden, D. M.; Benson, S. W. *Chem. Rev.* 1969, 69, 125–134. ^{*k*} From $\Delta H_f(HOCH_2^*) = 169$ kcal mol⁻¹ (ref i).

ergy-resolved electron beam from an electrostatic electron monochromator, combined with a quadrupole mass spectrometer.¹⁰ The appearance energies for these reactions will, in the limit, correspond to the general relationship

$$AE(R_{1}^{+}) = \Delta H_{f}(R_{1}^{+}) + \Delta H_{f}(R_{2}) - \Delta H_{f}(R_{1} - R_{2})$$
(4)

The heat of formation of $(H_2NCH_2^+)$ is well established at 178 kcal mol^{-1,11} $\Delta H_f(Me_2NCH_2^+)$ and $\Delta H_f(MeNHCH_2^+)$ were found to be 158 ± 2 and 166 ± 2 kcal mol⁻¹, respectively,¹² from the AE of reactions analogous to the above in which the neutral fragments were H, $\dot{C}H_3$, and $\dot{C}H_2OH$, whose ΔH_f are known. The resulting thermochemical quantities for R₂ are given in Table I, along with comparable data for $C_6H_5CH_2$, CH_2CHCH_2 , CH_3OCH_2 , and $HOCH_2$. Heat of formation data for the parent R-H compounds were taken from Cox and Pilcher;¹³ those for R_1-R_2 , were calculated by group equivalents.¹⁴

It is immediately obvious that α -aminoalkyls have remarkably large stabilization energies which increase dramatically with N alkylation. This property must underlie many of the chemical and physical¹⁵ properties of α -aminoalkyls. It is presumably the driving force for reactions such as the Stevens rearrangement¹⁹ which proceeds by a radical-pair mechanism. Moreover, it explains why amines²⁰ are as reactive as highly conjugated hydrocarbons²¹ in H abstractions with tert-butoxyl and tert-butylperoxyl. These reactions show a stereoelectronic effect²⁰ which must be a consequence of the conjugative delocalization. That is, H abstraction is most rapid when the C-H bond being broken is aligned with the principal axis of the nitrogen lone pair orbital. We note also that k_5 follows the order tertiary > secondary > primary amine as do the stabilization energies.

(10) Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1980, 102, 1591-1595.

2/9-324.
(15) For example, it is reflected in the EPR parameters of α-amino-alkyls^{16,17} which, by comparison with those of alkyls, benzyl, allyl, and α-alkoxyalkyls,¹⁸ show that the unpaired electron is extensively delocalized.
(16) Wood, D. E.; Lloyd R. V. J. Chem. Phys. 1970, 52, 3840-3841; 1970, 53, 3932-3942. Neta, P.; Fessenden, R. W. J. Phys. Chem. 1971, 75, 738-748. Lyons, A. R.; Symons, M. C. R. J. Chem. Soc., Faraday Trans.
2007 Content of Society Science (Society Content of Society Content 2 1972, 68, 502-508. See also: Kaba, R. A.; Griller, D.; Ingold, K. U. J. Am. Chem. Soc. 1974, 96, 6202-6203.

(17) Norman, R. O. C.; Anderson, N. H. J. Chem. Soc. B 1971, 993-1003.
(18) "Landolt-Börnstein, Group II"; Fischer, H., Hellwege, K.-H., Eds.;
Springer-Verlag: New York, 1977; Vol. 9, Part b.
(19) See: Lepley, A. R. J. Am. Chem. Soc. 1969, 91, 1237-1239.
(20) Griller, D.; Howard, J. A.; Marriott, P.; Scaiano, J. C. J. Am. Chem.

 α -Aminoalkyls have low ionization potentials which *decrease* with increasing N alkylation. The observed values are lower than those for the parent amines. In fact, the ionization potential for Me₂NCH₂ is the lowest thus far reported for any organic species.^{11,22} These results correlate with the observation that α aminoalkyls are powerful one-electron reducing agents.^{17,23}

The delocalization which forms the basis of these osbervations can be described in terms of the theory of the "three-electron bond".²⁴ This predicts that two of the three electrons formally designated by $\hat{N}-\dot{C}$ will be in a bonding orbital, with the third in an energetically close antibonding orbital. Excitation between the levels should therefore occur at fairly low energies. This is indeed the case; α -aminoalkyls have absorption spectra which "tail" from the UV to the visible region (e.g., for $Me_2N\dot{C}H_2$, ϵ 510 ± 100 M⁻¹ cm⁻¹ cm⁻¹ at 340 nm.²⁵ These absorptions are considerably red shifted with respect to those of alkyls (e.g., for Me₂CH, ϵ 1000 ± 50 M^{-1} s⁻¹ at 220 nm).²⁶

We conclude that the thermochemical parameters measured in this work form a basis for understanding the chemical and physical properties of α -aminoalkyls and that these can be modified in predictable ways by changing the extent of N (and C)²² alkylation.

(24) See, for example: Pauling, L. J. Am. Chem. Soc. 1931, 53, 3225-3237. Hudson, R. F. Angew. Chem., Int. Ed. Engl. 1973, 12, 36-56. Baird, N. C. J. Chem. Educ. 1977, 54, 291-293. Harcourt, R. D. Aust. J. Chem. 1978, 31, 199-201. Gregory, A. R.; Malatesta, V. J. Org. Chem. 1980,

45, 122-125. Harcourt, R. D. J. Am. Chem. Soc. 1980, 102, 5195-5201. (25) Griller, D.; Marriott, P. R., unpublished results. The spectra were recorded on a modulation spectrometer, the design for which was generously provided by Professor H. Fischer and Dr. C. Huggenberger.²⁶

(26) Huggenberger, C.; Fischer, H. Helv. Chim. Acta, in press, and ref-erences cited therein. See also: Parkes, D. A. Quinn, C. P. J. Chem. Soc., Faraday Trans. 1 1976, 72, 1952-1971.

Trivacant Heteropolytungstate Derivatives: The Rational Synthesis, Characterization, and ¹⁸³W NMR Spectra of $P_2W_{18}M_4(H_2O)_2O_{68}^{10-}$ (M = Co, Cu, Zn)

Richard G. Finke* and Mike Droege

Department of Chemistry, University of Oregon Eugene, Oregon 97403

James R. Hutchinson* and Otto Gansow

Department of Chemistry, Michigan State University East Lansing, Michigan 48824 Received August 18, 1980

In addition to the fundamental interest in heteropolytungstates,¹ the preparation of hybrid organometallic-heteropolytungstate derivatives has attracted recent attention.² An interesting feature of heteropolytungstates and related iso- and heteropolymetalates is the triangular array of tungsten bridging oxygens present on their surfaces, oxygens which resemble discrete fragments of heterogeneous metal oxide surfaces.³ We feel that these oxygens,

0002-7863/81/1503-1587\$01.25/0 © 1981 American Chemical Society

⁽¹¹⁾ Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data, Suppl. 1977, 6, 1-783.

 ⁽¹²⁾ Lossing, F. P.; Maccoll, A., in preparation.
 (13) Cox, J. D.; Pilcher, G. "Thermochemistry of Organic and Organo-

metallic Compounds"; Academic Press: New York, 1970. (14) Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 270 224 279 - 324

Soc., in press.

⁽²¹⁾ Effio, A.; Griller, D.; Ingold, K. U.; Scaiano, J. C.; Sheng, S. J. J. Am. Chem. Soc. **1980**, 102, 6063–6068. See also: Small, R. D., Jr.; Scaiano, J. C.; Patterson, L. K. Photochem. Photobiol. 1979, 29, 49-56.

t-BuO+ >CH-N< \rightarrow t-BuOH + >C-N< (5)

⁽²²⁾ Experiments are in progress to see if C alkylation increases the stabilization energies and reduces the ionization potentials of α -aminoalkyls.

⁽²³⁾ See for example: DeLaive, P. J.; Lee, J. T.; Sprintschnik, H. W.; Abruna, H.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1977, 99, 7094-7097. Chandrasekaran, K.; Whitten, D. G. J. Am. Chem. Soc. 1980, 102, 5119-5122.

⁽¹⁾ For reviews of heteropolytungstates, see: (a) Weakley, T. J. R. Struct.

Bonding 1974, 18, 131. (b) Tsigdinos, G. Top. Curr. Chem. 1978, 76, 1. (c) Evans, H. T., Jr. Perspect. Struct. Chem. 1971, 4, 1. (2) (a) Ho, R. K. C.; Klemperer, W. G. J. Am. Chem. Soc. 1978, 100, 6772. (b) Knoth, W. H. Ibid. 1979, 101, 759. (c) Zonnevijlle, F.; Pope, M. T. Ibid. 1979, 101, 2731.

Figure 1. (a) Coordination polyhedra representation of the crystallographically determined^{7a} C_{2h} symmetry structure for $P_2W_{18}Co_4(H_2O)_2O_{68}^{10-}$. The cobalt atoms occupy the four central edge-linked polyhedra, and the circles show the positions of water molecules. The five types of W atoms are labeled a_1 , a_2 , a_3 , b, and c. The two internal PO_4^{3-} tetrahedra are shown with dashed lines. (b) Framework bond model of the C_{2h} symmetry isomer of $P_2W_{18}Co_4(H_2O)_2O_{68}^{10-}$ also shown in (a). Open circles are bridging oxygens, filled circles are tungsten atoms, and the four central cobalt atoms are indicated by the circle within a circle. Terminal oxygens bound to tungsten and the two internal PO43² groups have been omitted for clarity. A triangular array of tungsten bridging oxygens can be clearly seen, for example, on the top and bottom of this figure.

Figure 2. The 7.50-MHz ¹⁸³W NMR spectrum of [P₂W₁₈Zn₄(H₂O)₂O₆₈]¹⁰⁻ as a 0.08 M D₂O solution observed by obtaining about 24000 scans over a period of 33 h. Chemical shift values are presented in the text.

as well as other features, make heteropolytungstates and their organometallic derivatives attractive as discrete models or mimics of metal oxide supported heterogeneous catalysts or, perhaps, as new types of hybrid homogeneous-heterogeneous,⁴ metal oxide supported catalysts. Within this context, it is noteworthy that Besecker and Klemperer⁵ have very recently succeeded in bonding a $M(CO)_3$ (M = Mn, Re) unit to a triangle of surface oxygens

of Nb₂W₄O₁₉⁴⁻.

With the goal of preparing $PW_9(ZnO)_3O_34^{9-}$, which should contain a Zn_3O_3 zinc oxide "mini surface" closely resembling a fragment of the "polar" (0001) surface⁶ of ZnO, we have examined the reaction of the trivacant heteropolytungstate $PW_9O_{34}^{9-}$ with Zn^{2+} and other M^{2+} ions. $[PW_9O_{34}^{9-}$ is $PW_{12}O_{40}^{3-}$ less a "W₃O₆⁶⁺" unit, hence tri(tungsten)vacant].

Herein we report results demonstrating that the reaction of the trivacant β -PW₉O₃₄⁹⁻ with the inorganic M²⁺ ions Co²⁺, Cu²⁺, Zn²⁺ unexpectedly, yet exclusively, yields the *di*-substituted dimers $[K_5PW_9M_2(H_2O)O_{34}\cdot 10H_2O]_2$, as well as full characterization including ¹⁸³W NMR of these complexes. There is only a single previous report^{7a} of these " $P_2W_{18}M_4$ " complexes in which they

⁽³⁾ Baker mentioned this feature in 1961: Baker, L. C. W., In "Advances (b) back instruction of the Coordination Compounds"; Kirschner, S., Ed.; MacMillan: New York, 1961; p 604. See also Pope, M. T.; Dale, B. W., Q. Rev., Chem. Soc. 1968, 22, 527. (4) With K^+ and similar cations, heteropolytungstates are insoluble in organic solvents, while with Bu_4N^+ and related counterions, they are soluble

in solvents like CH₃CN.

⁽⁵⁾ Besecker, C. J.; Klemperer, W. G. J. Am. Chem. Soc. 1980, 102, 7598. We are grateful to Professor Klemperer for a preprint of this important work.

⁽⁶⁾ Gay, R. R.; Nodine, M. H.; Henrich, V. E.; Zeiger, H. J.; Solomon, E. I. J. Am. Chem. Soc. 1980, 102, 6752. See Figure 1 therein.

were initially prepared in low yield either by the slow reaction of PCo(H₂O)W₁₁O₃₉⁵⁻ with Co²⁺ at pH 7-7.5 or by the prolonged, 100 °C reaction of a H⁺-HPO₄²⁻-M²⁺-WO₄²⁻ mixture of composition 11:2:4:18 to yield an unreported amount of K₁₀P₂W₁₈M₄(H₂O)₂O₆₈·2OH₂O and byproducts.^{7b} Routes toward the synthesis of XW₉(ZnO)₃O₃₄ⁿ⁻ (X = P, n = 9; X = Si, n = 10) are being actively investigated and will be reported subsequently.⁸

The trivacant heteropolytungstate β -PW₉O₃₄⁹⁻ has been previously described,^{9a} although its structural characterization as the B-type β -PW₉O₁₄⁹⁻ isomer^{9b} relied solely upon indirect methods. This trivacant heteropolytungstate is known⁹^c to exist in solution in fast, pH-dependent equilibria with $PW_{11}O_{39}^{7-}$ and other species. We discovered an unexpected M^{2+} substitution pattern of β - $PW_9O_{34}^{9-}$ during its titration with Co²⁺. The sequential addition of 0.5 equiv of solid $Co(NO_3)_2$ ·6H₂O to 0.5 g (0.17 mmol) of β -Na₈HPW₉O₃₄·24H₂O in 20 mL of unbuffered H₂O showed a linear absorption increase at 570 nm, with a sharp break point and no further adsorbance change at 2.0 rather than the anticipated 3.0 equiv of $Co(NO_3)_2$ to each equiv of β -PW₉O₃₄⁹⁻. A similar 2:1 titration is also obtained if the reverse order of addition, $PW_9O_{34}^{9-}$ to a solution of $Co(NO_3)_2$, is used, but a sharp 2:1 break point is not obtained in pH 4.5 OAc-/HOAc buffer. Solid samples of the compounds with $2M^{2+}$: $1PW_9O_{34}^{9-}$ stoichiometry were isolated in 71-79% yield as their K⁺ salts for $M^{2+} = Co^{2+}$, Cu^{2+} , and Zn^{2+} by the procedure detailed in the footnote.¹⁰ Each of the Co, Cu, and Zn complexes analyzed, after recrystallization from hot H_2O and 80 °C drying at <0.1 mmHg, to ±0.25% for K, P, W, and Co, Cu, or Zn for the formula $(K_5[P_1W_9M_2O_{34}$. $11H_2O]_n$

It seemed likely that the $K_5PW_9M_2O_{34}$ had dimerized to become "saturated", yielding the crystallographically characterized, C_{2h} symmetry, heteropolytungstate $K_{10}P_2W_{18}M_4(H_2O)_2O_{68}$ ·20H₂O shown in Figure 1. X-ray powder patterns have been obtained of crystalline $P_2W_{18}Co_4$ prepared by the previously reported method^{7a,b} and crystalline $P_2W_{18}Co_4$ (λ_{max} 570 nm) and $P_2W_{18}Zn_4$

(9) (a) β -Na₈HPW₉O₃₄·24H₂O was prepared by the procedure of: Massart, R.; Contant, R.; Fruchart, J. M.; Ciabrini, J. P.; Fournier, M. Inorg. Chem. 1977, 16, 2916. (b) The four PW₉O₃₄⁹ isomers A- α , A- β , B- α , and B- β are discussed in ref 9a. (c) Other references to XM₉ species and their pH-dependent solution equilibria and chemistry are: Contant, R.; Fruchart, J. M.; Hervě, G.; Tězě, A. C. R. Hebd. Acad. Sci., Seances Ser. C. 1974, 278, 199. Fournier, M.; Massart, R. Ibid. 1974, 279, 875. Tězě, A.; Hérve, G. J. Inorg. Nucl. Chem. 1977, 39, 999. Strandberg, R. Acta Chem. Scand., Ser. A. 1974, A28, 217.

prepared by the method reported herein. The peak-for-peak similarity of the patterns strongly suggests that the $P_2W_{18}M_4$ samples from the two synthetic methods are isostructural in the solid state.

Using ¹⁸³W NMR,¹¹ we have established that the solid-state C_{2h} symmetry structure persists¹² in solution in spite of the possibility of isomerization. The ¹⁸³W NMR of $P_2W_{18}Zn_4$ - $(H_2O)_2O_{68}^{10-}$ was obtained on a Bruker WH-180 spectrometer operating at a nominal 7.5 MHz and is the first ¹⁸³W NMR data on compounds of this structural type. When a mixture of 5.0 gof recrystallized $K_{10}P_2W_{18}Zn_4(H_2O)_2O_{68}$ in 11 mL of D_2O (0.084 M) is used (solubilized by 10 equiv of $LiClO_4$ and filtered to remove the KClO₄ precipitate), five peaks with chemical shifts of -90.3, -105.4, -115.0, -128.4, and -134.2 ppm (relative^{11c} to 2 M Na_2WO_4 in D_2O) and relative intensities of 1:2:2:2:2, respectively, were observed (Figure 2). Only the -105.4 and -134.2 peaks are resolved into well-defined doublets with $J({}^{31}P{}^{-183}W)$ = 1.1 and 1.6 Hz, respectively. The five different resonances and their relative intensities are consistent only with¹² the C_{2h} symmetry structure. In this structure each equivalent PW₉O₃₄ moiety above and below the plane of Zn atoms exhibits five nonequivalent W environments, a_1 , a_2 , a_3 , b, and c (Figure 1a), with relative populations of 2:2:2:2:1. The -90.3-ppm tungsten resonance of relative intensity 1 can be assigned to the W atom labeled c. The ¹⁸³W NMR establishes that our $P_2W_{18}M_4(H_2O)_2O_{68}^{10-}$ contains the PW₉ isomer labeled^{9b} B-type α -PW₉O₃₄⁹⁻. Our synthesis must include a W framework rearrangement of $B-\beta-PW_9$ to $B-\alpha-PW_9$, assuming, as is likely, that the literature assignment⁹ of the structure of the PW₉ starting material as $B-\beta$ -PW₉ is correct. Since an examination of models suggests that only B-type PW_9M_2 units can dimerize,¹³ we conclude that the observed $2M^{2+}$:1PW₉ stoichiometry is primarily due to the B-type isomer structure of the β -PW₉O₃₄⁹⁻ starting material. This conclusion is fortified by recent work¹⁴ showing that A-type α -SiW₉O₃₄¹⁰⁻ can be trisubstituted to yield α -SiW₉M₃O₄₀^{*n*-1} derivatives. An important implication of these results is that P₂W₁₈M₄-

An important implication of these results is that $P_2W_{18}M_4$ - $(H_2O)_2O_{68}^{10-}$ is *not* unique but rather is just a single member of a previously unrecognized class of massive, disubstituted, trivacant heteropolytungstates. Possible members of this new class include $[(B-\alpha-PW_9O_{34}M_2)_2P_2W_{12}O_{50}]^{28-}$ or $-(M_2P_2W_{12}O_{50}M_2)_n^{-10n-}$ where $P_2W_{12}O_{50}^{18-}$ has two trivacant B-type structures at its opposite ends.^{7b}

Acknowledgment. Financial support at Oregon was provided by National Science Foundation grant CHE78-11552 and a grant from Chevron Research. Support at Michigan State was provided by National Science Foundation Grant CHE28-10241. J.R.H. was on sabbatical leave for the 1979–1980 academic year from the Chemistry Department of Alma College, Alma, MI, and acknowledges the partial financial support of that institution.

^{(7) (}a) Weakley, T. J.; Evans, H. T., Junior; Showell, J. S.; Tourně, G. F.; Tourně, C. M. J. Chem. Soc., Chem. Commun. 1973, 139. The formation of $P_2W_{18}Co_4$ from $PW_9O_{34}^{\circ}$ and Co^{2+} is mentioned, in a one line statement, in: Tourně, C.; Revel, A.; Tourně, G.; Vendrell, M. C. R. Hebd. Seances Acad. Sci., Ser. C 1973, 277, 643. (b) In our hands, the 100 °C overnight reaction of a 11:2:4:18 mixture of HCl-Na₂HPO₄-Co(NO₃)₂-Na₂WO₄ on a 10-g scale of Na₂WO₄ in 50 mL of H₂O gave, upon cooling, I.3 g of a H₂O insoluble, blue byproduct. KCl addition to the filtrate gave 3.1 g (29%) of K₁₀P₂W₁₈Co₄(H₂O)₂O₆₈'20H₂O, λ_{max} (H₂O) 570, 510 (sh), 495 (sh) nm. (8) Finke, R. G.; Droege, M.; Rapko, B., unpublished results.

^{(10) (}a) The following reactions were performed with β -Na₈HPW₉O₃₄. 24H₂O prepared on one-quarter the literature^{9a} scale, washed with ca. 5 mL of unbuffered H₂O, and dried in a 140 °C oven for 1–2 h. In 15.0 mL of distilled, unbuffered H₂O, 2.0 g (0.70 mmol) of β -Na₈HPW₉O₃₄.24H₂O and 0.236 g (1.40 mmol) of CuCl₂·2H₂O were mixed and brought to a homogeneous lime green solution by a *minimum* of gentle steam bath warming, 10–20 min of stirring, and if necessary, warm filtration. The addition of excess KCl (4–6 g) gave an immediate green precipitate which, after 10 min of stirring and subsequent cooling, was washed with H₂O and dried at 80 °C to yield 1.53 g (79%) of a green powder [λ_{max} (H₂O) 800 nm]. Similar procedures using ZnCl₂ and Co(NO₃)₂ yielded, respectively, 1.47 g (77%) of a white powder and 1.37 g (71%) of a blue-purple powder [λ_{max} (H₂O) 570, 510 (sh), 495 (sh) nm] from a reddish solution in the Co case. Analytically pure samples were obtained by recrystallization from hot, unbuffered H₂O. The recrystallized Zn derivative, P₂W₁₈Zn₄, showed a ³¹P NMR signal at 4.8 ± 0.1 ppm upfield of a H₃PO₄ standard on a Varian XL-100 NMR. The reddish filtrate in the Co case has a visible spectrum identical with that of PW₁₁CoO₃₉⁵⁻ [lit.^{10b} λ_{max} (H₂O) 541, 526, 505 (sh) nm], and deep red crystallization of the filtrate. The use of a low heat (60 °C or air) dried Na₈HPW₉O₃₄ in the above procedure gives an initial Co(II) derivative with a visible spectrum different than that of the desired P₂W₁₈Co₄. (b) Komura, A.; Hayashi, M.; Imanaga, H. *Bull. Chem. Soc. Jpn.* **1976**, *49*, 87.

^{(11) (}a) Acerete, R.; Hammer, C. F.; Baker, L. C. W. J. Am. Chem. Soc. 1979, 101, 267. (b) Acerete, R.; Harmalker, S.; Hammer, C. F.; Pope, M. T.; Baker, L. C. W. J. Chem. Soc., Chem. Commun. 1979, 777. (c) Gansow, O. A.; Ho, R. K. C.; Klemperer, W. G. J. Organomet. Chem. 1980, 187, C27.

⁽¹²⁾ Rotation of a PW₉ group by $\pi/6$ gives a lower symmetry tungstate that should show a 2:2:2:2:1 set of W resonances for one PW₉ half and a different set of 2:2:2:2:1 resonances for the other PW₉ half. β -PW₉ in which a W₃ triad has been rotated $\pi/3$ removes either the C₂ axis or the horizontal plane of symmetry depending, respectively, upon whether the W₃ unit rotated is or is not bisected by the horizontal plane. The former case has, for example, 10 chemical shift inequivalent W atoms with relative intensities 1:2:2:2:2:2:2:2:1. If the K₁₀P₂W₁₈M₄O₆₈ dimer dissociated in solution, the resultant K₃PW₉M₂O₃₄ monomer could also explain the ¹⁸³W NMR. Solution molecular weight measurements are planned to unambiguously address this point.

⁽¹³⁾ An examination of models suggests that each of the four $PW_9O_{34}^{\circ}$ isomers A- α , A- β , B- α , B- β could form trisubstituted PW_9M_3 derivatives except, possibly, for the high overall negative charge in, for example, unprotonated "[[B-type α -PW₉O₃₄)(Co(H₂O)O)₃]^{\oplus}". On the other hand, models suggest that only B- α and B- β isomers of PW₉M₂ should be able to dimerize, thereby accounting for the 2:1 stoichiometry.

dimerize, thereby accounting for the 2:1 stoichiometry. (14) Mossoba, M. M.; O'Connor, C. J.; Pope, M. T.; Sinn, E.; Hervé, G.; Tézé, A. J. Am. Chem. Soc. 1980, 102, 6864. The exact pH is probably another important parameter in controlling di- vs. trisubstitution of XM₉ species.